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m-PRIMARY m-FULL IDEALS

TAE WHAN Woo*

ABSTRACT. An ideal I of a local ring (R, m, k) is said to be m-full
if there exists an element = € m such that Im : x = I. An ideal I
of a local ring R is said to have the Rees property if pu(I) > u(J) for
any ideal J containing I. We study properties of m-full ideals and
we characterize m-primary m-full ideals in terms of the minimal
number of generators of the ideals. In particular, for a m -primary
ideal I of a 2-dimensional regular local ring (R, m, k), we will show
that the following conditions are equivalent.

1. I is m-full

2. I has the Rees property

3. u(l)=0(I)+1
In this paper, let (R, m, k) be a commutative Noetherian local ring
with infinite residue field k = R/m.

1. Introduction

An ideal I of a local ring (R, m, k) is said to be m-full if there exists
an element x € m such that I'm : x = I. For example, any prime ideal P
of a local ring R is m-full, and depth R/I > 0, then I is m-full. Among
the source of m-full ideals, more improtant example than any others is
integrally closed ideals. In section 2, we show that any integrally closed
ideal I of a reduced local domain R is m-full(Corollary 2.9).

To an ideal I of R we associate the following graded rings ;
the associated graded ring of I :

G=grf(R)=R/I®oI/Po*/P®---
the Rees algebra of I :
T=R[It|=RelteI*t®---
the extended Rees algebra of I :
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S=R[It,t )= - ORt?ORI'OROItDI**D---

where ¢ is a indeterminate over R. Then the integral closure of I is
(t71)S N R, where S is the integral closure of S.

An ideal I of a local ring R is said to have the Rees property if
w(I) > p(J) for any ideal J containing I (Here p(I) = I(I/Im) de-
notes the minimal number of generators of ideal, [ stands the length of
R-module). Any m-primary m-full ideal of a local ring has the Rees
property. (Theorem 2.11) However, if I has the Rees property and
Im is m-full, then I is m-full(Theorem 2.13). Also we characterize m-
primary m-full ideals in terms of the minimal number of generaters p (1)
of I and the colength ®(Im) of Im. Here, ® is the map defined by
®(I) =g (R'/IR' +YR'), where R’ is the localization of R[X1,- -, X]
at mR[X1,---,Xg)and Y = a1 X7 + -+ + ag Xy, m = (a1, -+ ,aq). In
Theorem 2.15, we prove that m-primary ideal I is m-full if and only if
wu(I) = &(Im).

In [6], D.Rees showed that if I is a m-primary integrally closed ideal
of a 2-dimensional regular local ring (R, m, k) with infinite residue field
k = R/m, then u(I) = o(I) + 1, where o(I) is the integer such that
I € mU and I ¢ meO+!, Let I be a m-primary ideal of a 2-
dimensional regular local ring (R, m, k). Then the following conditions
are equivalent(Corollary 3.3).

1. I is m-full

2. I has the Rees property

3. u(l)=0(I)+1

In the latter half of section 3, some good property of m-primary m-
full ideal in a 2-dimensional regular local ring has been studied. If I is
m~primary m-full, then I'm is also m-full.

2. Properties of m-full ideals

DEFINITION 2.1. An ideal I of a local ring R is said to be m-full if
there exists an elememt x € m — m? such that Im : z = I.

EXAMPLE 2.2.
1. Let (R, m, k) be a local ring and let P be a prime ideal of R. Then
P is a minimal prime ideal containing mP and so P is a prime

divisor of mP. Therefore there exists an element x € m such that
Pm:x=P.



m-primary m-full ideals 801

2. Let (R, m, k) be a local ring and let I be m-full ideal of R. Then
I : J is m-full for any ideal J of R. Indeed, let Im : x = I and
lety e (I:Jm:x. Thenzy € (I : J)y)m C Im : J and so
ye(Im:J):x=UIm:z):J=1:J.

3. Let (R, m, k) be alocal ring with depth R/I > 0. Then there exists
an non zero divisor T € R/I and so I : x =1. Thus Im :z = 1I.

4. Let (R,m,k) be a local ring with depth R/I > 0 and let I =
(a1,a9, - ,ayn) be an ideal generated by a regular sequence. Then
1" is m-~full for any integer r > 1. We prove by induction on r.
Since depth R/I > 0, there exists x € m such that I = I : x.
Suppose that I"'m : x = I"™'. Ify € I"'m : z, then zy €
I"m C I""'m and soy € I"~! by the inductive hypothesis. Hence
we can write y = F(ai,as,- - ,a,) with F(Xy,Xo,---,X,) €
R[X1, Xy, -+, X,] homogeneous degree r — 1. Since

xy =xF(ay,a2, -+ ,ap) € ['m CI"

and ay,az,- - ,ay is a regular sequence, every coefficient of v F'( X1,
Xo,--+,Xp) belongsto I =1 : x. So every coefficient of F'(X1, Xa,
-+, X)) belongs to I. Therefore y € I".

5. Let X be an indeterminate over a local ring R with depth R/I > 0.
Then I [|X|] is m/-full in R[|X|] where m' is the maximal ideal of
R[IX]).

Another important example of m-full ideals is integrally closed ideals.
Let I be an ideal of a Noetherian ring R. An element x € R is said to
be integral over I if 2™ + a1z ' +---+a, =0, a; € I' . The set of all
elements of R which are integral over [ is called the integral closure of
I, and denoted by I. An ideal I is said to be integrally closed if I = I.
The next lemma is well known.

LEMMA 2.3. Let I be an ideal of a Noetherian ring R and let R[It,t7!]
be the extended Rees algebra of I, R[It,t7 '] =--- @Rt '@ RO It
I?t> @ --- . Then an element x € R is integral over I if and only if
xt € R[t,t7Y] is integral over R[It,t~']. (Heret is an indeterminate over

R)

COROLLARY 2.4. Let I be an ideal of a Noetherian ring R. Then I
is an ideal of R.

Proof. Let z and y be elements in I and let r € R. Then xt and yt
in R[t,t7!] are integral over R[It,t71] by Lemma 2.3. Thus zt + yt =
(x 4+ y)t and rat are integral over R[It,t!]. From Lemma 2.3, we have
x +y and rz are in I. O
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COROLLARY 2.5. Let I be an ideal of Noetherian ring R and let S
be the integral closure of S = R[It, t=Y in its total quotient ring. Then
I=@t1YHSNR.

PROPOSITION 2.6. Let I be an ideal of a Noetherian local ring R. If

the associated graded ring of I is reduced, then I" is integrally closed
for any r > 0.

Proof. We use induction on r. Suppose r > 1 and I =1 is integrally
closed. Let x € I". Then x satisfies

"4 az" P+ +a,=0, a; €l

Thus

" = —(apz" ' - +a,) e I
since each q;z"~" € [T (=)(r=1) C rrr—n+l et 7 be the image of z in
I"Y/I" C gry(R). Then (z)" € I""=D /"=7+1 Hence (z)" = 0. So,
Z = 0 since gry(R) is reduced. Therefore z € I". O

COROLLARY 2.7. Let (R,m,k) be a regular local ring. Then m" is
integrally closed for any r > 1.

Proof. Tt is enough to note that gr,,(R) is the polynomial ring k[X7,
-++, Xg4] which is a domain where X7,---, X, are indeterminates over
k. O

It is shown that the integral closure of a Noetherian ring is a Krull
ring. Since R[It,t7!] is a Noetherian ring, S is a Krull ring with the
same notation as in Corollary 2.5. Now we prove that any integrally
closed ideal is m-full.

THEOREM 2.8. Let (R, m, k) be a reduced local domain and let I be
an id_eal of R. Then there exists an element x € m such that I C Im :
z C 1.

Proof. Put S = R[It,t~!]. Then, since S is a Krull ring, we have a
primary decomposition
tHS=an---ng
of (t71)S with each P; = /@ a height 1 prime ideal of S. For each

i =1,2,---7, we consider the discrete valuation ring V; = Sp, . Since

&
k = R/m is infinite, there exists an element € m — U(PiV;mVi N R)
i=1

such that mV; = a2V, for all 1 < i < r.



m-primary m-full ideals 803

Now let y € Im : x. Then as % e mV;1IV; = xV;IV;, we have

,
elV;CqV;forall 1 < i < r. Hence y € (ﬂqi)ﬁR = [ since
i=1

Y
1
I =(t"1)S N R by Corollary 2.5. O

COROLLARY 2.9. Any integrally closed ideal of a reduced local do-
main (R, m, k) is m-full.

Now, in the remainder of this paper, we will consider mostly m-
primary m-full ideals. Actually, m-primary m-full ideals have good
properties than that of non m-primary ideals. Also, m-primary m-full
ideals are characterized in terms of the minimal number of generators
of ideal and the colength.

DEFINITION 2.10. Let (R, m, k) be a local ring. An ideal I of R is
said to have the Rees property if p(I) > p(J) for any ideal J containing
I. (Here p(I) = I(I/Im) denotes the minimal number of generators of
ideal, I stands the length of R-module)

THEOREM 2.11. Let (R, m, k) be a local ring. Then any m-primary
m-full ideal has the Rees property.

Proof. Let Im : x = I. By the exact sequence
0—R/Im:xz— R/Im — R/Im+zR— 0
(Here py : R/Im : x — R/Im is the map defined by u,(r + Im : x) =
xr + Im), we have
(R/Im+zR)=1(Im:x/Im)=1(I/Im) = u(I).
Hence for any ideal J containing [
u(J) = 1(J/Jm)

<l(Jm:xz/Jm)=1R/IJm+ zR)

<UR/Im+ zR) = p(I).
Thus I has the Rees property. 0

REMARK 2.12. If a parameter ideal I of a d-dimensional local ring
R is m-full, then R is a regular local ring. Indeed, since I has the Rees
property,
d=dimR < p(m) < p(l) =d.

Hence R is a regular local ring.
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PROPOSITION 2.13. Let (R, m, k) be a local ring and let I be an ideal
of R. If Im:x=1,thenl:m=1":x.

Proof. Since I'm : x =1,
Iz C(Im:m):x=UIm:z):m=1:m.
Hence I :z=1:m. 0

THEOREM 2.14. Let I be an ideal of R such that Im is m-full. If I
has the Rees property, then I is m-full.

Proof. We will show that I'm : m = I. Suppose I C I'm : m and let
J =1Im :m. Then u(I) > p(J) since I has the Rees property. On the
other hand, Jm = I'm and so

w(J) = 1(J/Jm) = 1(J/Im) > I(I/Im) = p(D).

This is a contradiction and we must have I'm : m = I. Since I'm is m-full,
there exists an element x € m such that Im : x = Im : m. Therefore
I=Im:m=1Im:zx. O

DEFINITION 2.15. Let (R, m,k) be a local ring with the maximal
ideal m = (a1, -+ ,aq) and let I be a m-primary ideal of R. Let R’
denotes R[X1, -, Xy4] localized at mR[X1, - -, X4], where X1, -+, Xy
are indeterminates over R. Put Y = a1 X7 + --- 4+ a4 X4. For any m-
primary ideal I, we define the colength of I by ®(I) = lg/(R'/IR'+Y R’).
In particular, an element € m — m? is called a general element for I if
®(I)=Ir(R/I+ zR).

REMARK 2.16.

1. In general, ®(I) < Ir(R/I + zR) for any z € m. But for any
m-primary ideal I, a general element exists always.
2. Let I be a m-primary ideal. From the exact sequence

0—-I—-I:m—I:m/l—0
we have the exact sequence
0—-I®oR —-I:meR —{:m/I)eR — 0.

So(I:m/I)® R = (I:m)R'/IR'. Note that (I : m)R' =1R':
mAR'. Hence

IR :mR'JT")=1((I:m)R'/JIR)
I((I:m/I)® R)
l

(I:m/I).

(2.1)
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THEOREM 2.17. Let (R, m, k) be a local ring and let I be a m-primary
ideal. Then the following conditions are equivalent.

1. I is m-full
2. pu(I) =®(Im)

Proof. 1 = 2; Let Im : x = I. Then Im : m = Im : x since
Im:xz=1C Im:m. From the exact sequence

0—R/Im:xz— R/Im — R/Im+2xR— 0

we have
I(R/Im+zR) =1(Im:x/Im)
(2.2) =1Im:m/Im)
=I(ImR : mR'/ImR').

Also from the exact sequence

0— R/ImR :Y - R /ImR — R'/ImR' +YR — 0
we have

O(Im) = I
I
(2.3) i
I

Hence ®(Im) = I[(R/Im + xR) by the above Remark 2.16 (Note that x
is a general element for I'm). On the other hand, from the first exact
sequence, we have

2.4)  p(l) =1I/Im) = {(Im: x/Im) = (R/Im + zR).

Hence u(I) = ®(Im).
2=1; Let x be a general element for Im. Then ®(Im) = I(R/Im +
zR) and so

(2.5)  IIm:z/Im)=1R/Im+xR)=(Im) = pu(I) =1(I/Im).
Hence Im : x = 1. ]
From the proof of Theorem 15, we have easy consequences.

COROLLARY 2.18. Let (R,m,k) be a local ring and let I be a m-
primary ideal of R. If Im : x = I, then x is a general element for Im.
Also if I is m-~full, then I'm : x = I for any general element x in Im.



806 Tae Whan Woo

Proof. Let x be any general element for I'm. Then,
p(l) =@(Im)=I1(R/Im+zR) =1(Im:x/Im).

Hence Im : x = I for any general element in I'm. O

3. m-full ideals in a 2-dimensional regular local ring

Now, we assume that (R,m, k) is a 2-dimensional regular local ring
with infinite residue field £ = R/m and let I be a m-primary ideal of
R. In Theorem 2.11, we prove that any m-primary m-full ideal has the
Rees property.

LEmMA 3.1. Let I be a m-primary ideal of R. Then there exists an
element x € m —m? such that [(R/I + xR) = o(I).

Proof. Let o(I) = n and let m = (t1,t2). Then I contains an element
a such that a € m"™ — m"™*1. Write
a=boty + byt o+ +byth, b € R.

Take a linear transformation ¢; — t1, to9 — zt1 + to for some z € R — m.
Then

a=coth +eith g -,
where ¢g is a unit. Let x = t3. Then R/zR is a discrete valuation ring
and I = t7'R(modzR). Therefore [(R/I + zR) =n. O

THEOREM 3.2. Let I be a m-primary ideal of R. If I has the Rees
property, then I is m-full.

Proof. Let o(I) = n. Then there exists an element z € m — m? such

that [(R/Im + xR) = n+ 1 by Lemma 3.1. Therefore

(3.1) I(R/Im+zR)=n+1=p(m") < pu(l)=1(I/Im)

since I has the Rees property. Now from the exact sequence
0—R/Im:xz— R/Im — R/Im+2xR—0

we have
I(Im:x/Im)=1(R/Im+ zR) <I(I/Im).

Hence I'm : x = I and so I is m-full. O

THEOREM 3.3. Let I be a m-primary ideal of R. Then the following
conditions are equivalent.

1. I is m-full
2. I has the Rees property
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3. u(I) = o(I) +1

Proof. 1 = 2; Theorem 2.11.
2 = 3; Since I has the Rees property, pu(m°?) < u(I). Note that there
exists an element x € m—m? such that [(R/Im+xR) = o(Im) = o(I)+1
by Lemma 3.1. Hence

I(Im:z/Im)=1(R/Im+zR)=0o(I)+1
(3-2) = p(m*D) < u(I)
=1(I/Im) <I(Im:z/Im).

Thus u(I) =o(I) + 1.
3 = 1; Let = be an element in m such that [((R/Im + zR) = o(I) + 1.
Then

(33) IlIm:xz/Im)=1(R/Im+zR)=0(I)+1=pu()=1I/Im).
Hence I'm : x = I. O

PRrROPOSITION 3.4. Let I be a m-primary ideal of R. If Im : xz = I,
then l(R/I + zR) = o(I).

Proof. In general [(R/I + xR) > o(I) since
m+azROm2+2zRD---2m°D 2RO I+ zR

for any = € m. Suppose [(R/I + xR) > o(I). Then from the exact
sequence

0—R/Im:xz— R/Im — R/Im+ xR — 0
we have [(R/Im + zR) = p(I). Since [ is m-full,
(3.4) oI)+1=p(l)=U(R/m+zR) >1(R/] +xR) > o(I).
So l(R/Im + xR) = l(R/I + zR). From the fact
I(R/Im+zR)=1(R/I+zR)+ (I + zR/zR)

we have u(l + xzR/xR) = 0. Thus I C zR. Let m = (x,y) and let
a =ry ¢ xR such that rz € I. Then a ¢ I and ax = ryx € Im, so
a € I'm : z. This is a contradiction. O

REMARK 3.5. If Im : x = I, then Im : m = Im : x. Thus [((R/Im +
zR) =o(Im) =o(I)+ 1.

THEOREM 3.6. A primary ideal I of R is m-full if and only if [ : m =
I : z for some x € m —m? such that [(R/I + zR) = o(I).



808 Tae Whan Woo

Proof. Suppose I is m-~full. Then Im : x = I for some x € m such
that [((R/I + xR) = o(I) by proposition 3.4. Hence I : m = I : x for
some x € m such that [((R/I + zR) = o(I).

Conversely, let o(I) = r. From the exact sequence

0—-R/I:x— R/I—R/I+zR—0

we have

I(R/I+xzR)=1(I:z/I)
=1(I:m/I)=dimg(I:m/I).

(3.5) "

On the other hand, from the resolution of k = R/m, we have
Tork(R/1,k) =1 :m/I.

Now applying the Hilbert-Burch Theorem for the resolution of R/I, we
know that Tors(R/I,k) is a u(I) — 1 dimensional k-vector space. Hence
r=pu(I)—1 and I is m-full by Corollary 3.3. O

LEMMA 3.7. Let I and J be m-primary ideals of R. If [ :m =1 :«x
and J:-m=J:x,thenIJ .- m=1J:x.

Proof. Put m = (z,y). Since R/(z) is a discrete valuation ring, there
exist 1 € I, z9 € J such that

(I,z) = (x1,2), (J,z)= (x2,z).
Note that neither x1 nor xo is divisible by x. Let o € I.J : . Then

ar =Y (arjmy + Bijx)(ogjwa + Bajz),  ouj, Buj, gy, Boj €R

since By € I, Bojy € Jasfor el x=1:m, By J:x=J:m.
On the other hand, since ) ayjonjx122 is divisible by x, it follows
that > aqjan; is divisible by z. Hence

ary = (ﬂl‘le +7)$7 B € Rv v E 1J.
Thus ay € IJ and so am C IJ. O

THEOREM 3.8. Let (R, m, k) be a 2-dimensional regular local ring. If
I is a m-primary m-full, then Im is also m-full.

Proof. Let Im : x = 1. Then I :m=1:xzandm:z =m : m.
Hence I'm : x = Im : m by Lemma 3.7. But [(R/Im + zR) = o(Im)
since [ is m-~full, so I'm is m-full by Theorem 3.5.

O
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