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m-PRIMARY m-FULL IDEALS

Tae Whan Woo*

Abstract. An ideal I of a local ring (R, m, k) is said to be m-full
if there exists an element x ∈ m such that Im : x = I. An ideal I
of a local ring R is said to have the Rees property if µ(I) > µ(J) for
any ideal J containing I. We study properties of m-full ideals and
we characterize m-primary m-full ideals in terms of the minimal
number of generators of the ideals. In particular, for a m -primary
ideal I of a 2-dimensional regular local ring (R, m, k), we will show
that the following conditions are equivalent.

1. I is m-full
2. I has the Rees property
3. µ(I) = o(I) + 1

In this paper, let (R, m, k) be a commutative Noetherian local ring
with infinite residue field k = R/m.

1. Introduction

An ideal I of a local ring (R,m, k) is said to be m-full if there exists
an element x ∈ m such that Im : x = I. For example, any prime ideal P
of a local ring R is m-full, and depth R/I > 0 , then I is m-full. Among
the source of m-full ideals, more improtant example than any others is
integrally closed ideals. In section 2, we show that any integrally closed
ideal I of a reduced local domain R is m-full(Corollary 2.9).

To an ideal I of R we associate the following graded rings ;
the associated graded ring of I :

G = grI(R) = R/I ⊕ I/I2 ⊕ I2/I3 ⊕ · · ·
the Rees algebra of I :

T = R[It] = R⊕ It⊕ I2t2 ⊕ · · ·
the extended Rees algebra of I :
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S = R[It, t−1] = · · · ⊕Rt−2 ⊕Rt−1 ⊕R⊕ It⊕ I2t2 ⊕ · · ·
where t is a indeterminate over R. Then the integral closure of I is
(t−1)S̄ ∩R, where S̄ is the integral closure of S.

An ideal I of a local ring R is said to have the Rees property if
µ(I) ≥ µ(J) for any ideal J containing I (Here µ(I) = l(I/Im) de-
notes the minimal number of generators of ideal, l stands the length of
R-module). Any m-primary m-full ideal of a local ring has the Rees
property. (Theorem 2.11) However, if I has the Rees property and
Im is m-full, then I is m-full(Theorem 2.13). Also we characterize m-
primary m-full ideals in terms of the minimal number of generaters µ(I)
of I and the colength Φ(Im) of Im. Here, Φ is the map defined by
Φ(I) = lR′(R′/IR′+Y R′), where R′ is the localization of R[X1, · · · , Xd]
at mR[X1, · · · , Xd] and Y = a1X1 + · · · + adXd, m = (a1, · · · , ad). In
Theorem 2.15, we prove that m-primary ideal I is m-full if and only if
µ(I) = Φ(Im).

In [6], D.Rees showed that if I is a m-primary integrally closed ideal
of a 2-dimensional regular local ring (R,m, k) with infinite residue field
k = R/m, then µ(I) = o(I) + 1, where o(I) is the integer such that
I ⊆ mo(I) and I 6⊆ mo(I)+1. Let I be a m-primary ideal of a 2-
dimensional regular local ring (R,m, k). Then the following conditions
are equivalent(Corollary 3.3).

1. I is m-full
2. I has the Rees property
3. µ(I) = o(I) + 1
In the latter half of section 3, some good property of m-primary m-

full ideal in a 2-dimensional regular local ring has been studied. If I is
m-primary m-full, then Im is also m-full.

2. Properties of m-full ideals

Definition 2.1. An ideal I of a local ring R is said to be m-full if
there exists an elememt x ∈ m−m2 such that Im : x = I.

Example 2.2.
1. Let (R, m, k) be a local ring and let P be a prime ideal of R. Then

P is a minimal prime ideal containing mP and so P is a prime
divisor of mP . Therefore there exists an element x ∈ m such that
Pm : x = P .
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2. Let (R, m, k) be a local ring and let I be m-full ideal of R. Then
I : J is m-full for any ideal J of R. Indeed, let Im : x = I and
let y ∈ (I : J)m : x. Then xy ∈ (I : J)m ⊆ Im : J and so
y ∈ (Im : J) : x = (Im : x) : J = I : J .

3. Let (R, m, k) be a local ring with depth R/I > 0. Then there exists
an non zero divisor x̄ ∈ R/I and so I : x = I. Thus Im : x = I.

4. Let (R, m, k) be a local ring with depth R/I > 0 and let I =
(a1, a2, · · · , an) be an ideal generated by a regular sequence. Then
Ir is m-full for any integer r ≥ 1. We prove by induction on r.
Since depth R/I > 0, there exists x ∈ m such that I = I : x.
Suppose that Ir−1m : x = Ir−1. If y ∈ Irm : x, then xy ∈
Irm ⊆ Ir−1m and so y ∈ Ir−1 by the inductive hypothesis. Hence
we can write y = F (a1, a2, · · · , an) with F (X1, X2, · · · , Xn) ∈
R[X1, X2, · · · , Xn] homogeneous degree r − 1. Since

xy = xF (a1, a2, · · · , an) ∈ Irm ⊆ Ir

and a1, a2, · · · , an is a regular sequence, every coefficient of xF (X1,
X2, · · · , Xn) belongs to I = I : x. So every coefficient of F (X1, X2,
· · · , Xn) belongs to I. Therefore y ∈ Ir.

5. Let X be an indeterminate over a local ring R with depth R/I > 0.
Then I [|X|] is m′-full in R [|X|] where m′ is the maximal ideal of
R [|X|].

Another important example of m-full ideals is integrally closed ideals.
Let I be an ideal of a Noetherian ring R. An element x ∈ R is said to
be integral over I if xn + a1x

n−1 + · · ·+ an = 0, ai ∈ Ii . The set of all
elements of R which are integral over I is called the integral closure of
I, and denoted by Ī. An ideal I is said to be integrally closed if Ī = I.
The next lemma is well known.

Lemma 2.3. Let I be an ideal of a Noetherian ring R and let R[It, t−1]
be the extended Rees algebra of I, R[It, t−1] = · · · ⊕ Rt−1 ⊕ R ⊕ It ⊕
I2t2 ⊕ · · · . Then an element x ∈ R is integral over I if and only if
xt ∈ R[t, t−1] is integral over R[It, t−1]. (Here t is an indeterminate over
R)

Corollary 2.4. Let I be an ideal of a Noetherian ring R. Then Ī
is an ideal of R.

Proof. Let x and y be elements in Ī and let r ∈ R. Then xt and yt
in R[t, t−1] are integral over R[It, t−1] by Lemma 2.3. Thus xt + yt =
(x + y)t and rxt are integral over R[It, t−1]. From Lemma 2.3, we have
x + y and rx are in Ī.
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Corollary 2.5. Let I be an ideal of Noetherian ring R and let S̄
be the integral closure of S = R[It, t−1] in its total quotient ring. Then
Ī = (t−1)S̄ ∩R.

Proposition 2.6. Let I be an ideal of a Noetherian local ring R. If
the associated graded ring of I is reduced, then Ir is integrally closed
for any r ≥ 0.

Proof. We use induction on r. Suppose r ≥ 1 and Ir−1 is integrally
closed. Let x ∈ Īr. Then x satisfies

xn + a1x
n−1 + · · ·+ an = 0, ai ∈ Iri.

Thus
xn = −(a1x

n−1 + · · ·+ an) ∈ Inr−n+1

since each aix
n−i ∈ Iri+(n−i)(r−1) ⊆ Inr−n+1. Let x̄ be the image of x in

Ir−1/Ir ⊆ grI(R). Then (x̄)n ∈ In(r−1)/Inr−n+1. Hence (x̄)n = 0. So,
x̄ = 0 since grI(R) is reduced. Therefore x ∈ Ir.

Corollary 2.7. Let (R, m, k) be a regular local ring. Then mr is
integrally closed for any r ≥ 1.

Proof. It is enough to note that grm(R) is the polynomial ring k[X1,
· · · , Xd] which is a domain where X1, · · · , Xd are indeterminates over
k.

It is shown that the integral closure of a Noetherian ring is a Krull
ring. Since R[It, t−1] is a Noetherian ring, S̄ is a Krull ring with the
same notation as in Corollary 2.5. Now we prove that any integrally
closed ideal is m-full.

Theorem 2.8. Let (R, m, k) be a reduced local domain and let I be
an ideal of R. Then there exists an element x ∈ m such that I ⊆ Im :
x ⊆ Ī.

Proof. Put S = R[It, t−1]. Then, since S̄ is a Krull ring, we have a
primary decomposition

(t−1)S̄ = q1 ∩ · · · ∩ qr

of (t−1)S̄ with each Pi =
√

qi a height 1 prime ideal of S̄. For each
i = 1, 2, · · · r, we consider the discrete valuation ring Vi = S̄Pi . Since

k = R/m is infinite, there exists an element x ∈ m −
r⋃

i=1

(PiVimVi ∩R)

such that mVi = xVi for all 1 ≤ i ≤ r.
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Now let y ∈ Im : x. Then as
xy

1
∈ mViIVi = xViIVi, we have

y

1
∈ IVi ⊆ qiVi for all 1 ≤ i ≤ r. Hence y ∈ (

r⋂

i=1

qi) ∩ R = Ī since

Ī = (t−1)S̄ ∩R by Corollary 2.5.

Corollary 2.9. Any integrally closed ideal of a reduced local do-
main (R, m, k) is m-full.

Now, in the remainder of this paper, we will consider mostly m-
primary m-full ideals. Actually, m-primary m-full ideals have good
properties than that of non m-primary ideals. Also, m-primary m-full
ideals are characterized in terms of the minimal number of generators
of ideal and the colength.

Definition 2.10. Let (R, m, k) be a local ring. An ideal I of R is
said to have the Rees property if µ(I) ≥ µ(J) for any ideal J containing
I. (Here µ(I) = l(I/Im) denotes the minimal number of generators of
ideal, l stands the length of R-module)

Theorem 2.11. Let (R, m, k) be a local ring. Then any m-primary
m-full ideal has the Rees property.

Proof. Let Im : x = I. By the exact sequence

0 → R/Im : x → R/Im → R/Im + xR → 0

(Here µx : R/Im : x → R/Im is the map defined by µx(r + Im : x) =
xr + Im), we have

l(R/Im + xR) = l(Im : x/Im) = l(I/Im) = µ(I).

Hence for any ideal J containing I

µ(J) = l(J/Jm)

≤ l(Jm : x/Jm) = l(R/Jm + xR)

≤ l(R/Im + xR) = µ(I).

Thus I has the Rees property.

Remark 2.12. If a parameter ideal I of a d-dimensional local ring
R is m-full, then R is a regular local ring. Indeed, since I has the Rees
property,

d = dim R ≤ µ(m) ≤ µ(I) = d.

Hence R is a regular local ring.
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Proposition 2.13. Let (R,m, k) be a local ring and let I be an ideal
of R. If Im : x = I, then I : m = I : x.

Proof. Since Im : x = I,

I : x ⊆ (Im : m) : x = (Im : x) : m = I : m.

Hence I : x = I : m.

Theorem 2.14. Let I be an ideal of R such that Im is m-full. If I
has the Rees property, then I is m-full.

Proof. We will show that Im : m = I. Suppose I ⊆ Im : m and let
J = Im : m. Then µ(I) ≥ µ(J) since I has the Rees property. On the
other hand, Jm = Im and so

µ(J) = l(J/Jm) = l(J/Im) > l(I/Im) = µ(I).

This is a contradiction and we must have Im : m = I. Since Im is m-full,
there exists an element x ∈ m such that Im : x = Im : m. Therefore
I = Im : m = Im : x.

Definition 2.15. Let (R,m, k) be a local ring with the maximal
ideal m = (a1, · · · , ad) and let I be a m-primary ideal of R. Let R′
denotes R[X1, · · · , Xd] localized at mR[X1, · · · , Xd], where X1, · · · , Xd

are indeterminates over R. Put Y = a1X1 + · · · + adXd. For any m-
primary ideal I, we define the colength of I by Φ(I) = lR′(R′/IR′+Y R′).
In particular, an element x ∈ m−m2 is called a general element for I if
Φ(I) = lR(R/I + xR).

Remark 2.16.
1. In general, Φ(I) ≤ lR(R/I + xR) for any x ∈ m. But for any

m-primary ideal I, a general element exists always.
2. Let I be a m-primary ideal. From the exact sequence

0 → I → I : m → I : m/I → 0

we have the exact sequence

0 → I ⊗R′ → (I : m)⊗R′ → (I : m/I)⊗R′ → 0.

So (I : m/I)⊗R′ ∼= (I : m)R′/IR′. Note that (I : m)R′ = IR′ :
mR′. Hence

l(IR′ : mR′/I ′) = l((I : m)R′/IR′)

= l((I : m/I)⊗R′)
= l(I : m/I).

(2.1)
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Theorem 2.17. Let (R, m, k) be a local ring and let I be a m-primary
ideal. Then the following conditions are equivalent.

1. I is m-full
2. µ(I) = Φ(Im)

Proof. 1 ⇒ 2; Let Im : x = I. Then Im : m = Im : x since
Im : x = I ⊆ Im : m. From the exact sequence

0 → R/Im : x → R/Im → R/Im + xR → 0

we have
l(R/Im + xR) = l(Im : x/Im)

= l(Im : m/Im)

= l(ImR′ : mR′/ImR′).
(2.2)

Also from the exact sequence

0 → R′/ImR′ : Y → R′/ImR′ → R′/ImR′ + Y R′ → 0

we have
Φ(Im) = l(R′/ImR′ + Y R′)

= l(ImR′ : Y/ImR′)

≥ l(ImR′ : mR′/ImR′)
= l(R/Im + xR).

(2.3)

Hence Φ(Im) = l(R/Im + xR) by the above Remark 2.16 (Note that x
is a general element for Im). On the other hand, from the first exact
sequence, we have

(2.4) µ(I) = l(I/Im) = l(Im : x/Im) = l(R/Im + xR).

Hence µ(I) = Φ(Im).
2⇒1; Let x be a general element for Im. Then Φ(Im) = l(R/Im +

xR) and so

(2.5) l(Im : x/Im) = l(R/Im + xR) = Φ(Im) = µ(I) = l(I/Im).

Hence Im : x = I.

From the proof of Theorem 15, we have easy consequences.

Corollary 2.18. Let (R, m, k) be a local ring and let I be a m-
primary ideal of R. If Im : x = I, then x is a general element for Im.
Also if I is m-full, then Im : x = I for any general element x in Im.
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Proof. Let x be any general element for Im. Then,

µ(I) = Φ(Im) = l(R/Im + xR) = l(Im : x/Im).

Hence Im : x = I for any general element in Im.

3. m-full ideals in a 2-dimensional regular local ring

Now, we assume that (R, m, k) is a 2-dimensional regular local ring
with infinite residue field k = R/m and let I be a m-primary ideal of
R. In Theorem 2.11, we prove that any m-primary m-full ideal has the
Rees property.

Lemma 3.1. Let I be a m-primary ideal of R. Then there exists an
element x ∈ m−m2 such that l(R/I + xR) = o(I).

Proof. Let o(I) = n and let m = (t1, t2). Then I contains an element
a such that a ∈ mn −mn+1. Write

a = b0t
n
1 + b1t

n−1
1 t2 + · · ·+ bntn2 , bi ∈ R.

Take a linear transformation t1 → t1, t2 → zt1 + t2 for some z ∈ R−m.
Then

a = c0t
n
1 + c1t

n−1
1 t2 + · · · ,

where c0 is a unit. Let x = t2. Then R/xR is a discrete valuation ring
and I ≡ tn1R (modxR). Therefore l(R/I + xR) = n.

Theorem 3.2. Let I be a m-primary ideal of R. If I has the Rees
property, then I is m-full.

Proof. Let o(I) = n. Then there exists an element x ∈ m−m2 such
that l(R/Im + xR) = n + 1 by Lemma 3.1. Therefore

(3.1) l(R/Im + xR) = n + 1 = µ(mn) ≤ µ(I) = l(I/Im)

since I has the Rees property. Now from the exact sequence

0 → R/Im : x → R/Im → R/Im + xR → 0

we have
l(Im : x/Im) = l(R/Im + xR) ≤ l(I/Im).

Hence Im : x = I and so I is m-full.

Theorem 3.3. Let I be a m-primary ideal of R. Then the following
conditions are equivalent.

1. I is m-full
2. I has the Rees property
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3. µ(I) = o(I) + 1

Proof. 1 ⇒ 2; Theorem 2.11.
2 ⇒ 3; Since I has the Rees property, µ(mo(I)) ≤ µ(I). Note that there
exists an element x ∈ m−m2 such that l(R/Im+xR) = o(Im) = o(I)+1
by Lemma 3.1. Hence

l(Im : x/Im) = l(R/Im + xR) = o(I) + 1

= µ(mo(I)) ≤ µ(I)

= l(I/Im) ≤ l(Im : x/Im).

(3.2)

Thus µ(I) = o(I) + 1.
3 ⇒ 1; Let x be an element in m such that l(R/Im + xR) = o(I) + 1.
Then

(3.3) l(Im : x/Im) = l(R/Im + xR) = o(I) + 1 = µ(I) = l(I/Im).

Hence Im : x = I.

Proposition 3.4. Let I be a m-primary ideal of R. If Im : x = I,
then l(R/I + xR) = o(I).

Proof. In general l(R/I + xR) ≥ o(I) since

m + xR ⊇ m2 + xR ⊇ · · · ⊇ mo(I) + xR ⊇ I + xR

for any x ∈ m. Suppose l(R/I + xR) > o(I). Then from the exact
sequence

0 → R/Im : x → R/Im → R/Im + xR → 0

we have l(R/Im + xR) = µ(I). Since I is m-full,

(3.4) o(I) + 1 = µ(I) = l(R/m + xR) ≥ l(R/I + xR) > o(I).

So l(R/Im + xR) = l(R/I + xR). From the fact

l(R/Im + xR) = l(R/I + xR) + (I + xR/xR)

we have µ(I + xR/xR) = 0. Thus I ⊆ xR. Let m = (x, y) and let
a = ry /∈ xR such that rx ∈ I. Then a /∈ I and ax = ryx ∈ Im, so
a ∈ Im : x. This is a contradiction.

Remark 3.5. If Im : x = I, then Im : m = Im : x. Thus l(R/Im +
xR) = o(Im) = o(I) + 1.

Theorem 3.6. A primary ideal I of R is m-full if and only if I : m =
I : x for some x ∈ m−m2 such that l(R/I + xR) = o(I).
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Proof. Suppose I is m-full. Then Im : x = I for some x ∈ m such
that l(R/I + xR) = o(I) by proposition 3.4. Hence I : m = I : x for
some x ∈ m such that l(R/I + xR) = o(I).

Conversely, let o(I) = r. From the exact sequence

0 → R/I : x → R/I → R/I + xR → 0

we have
r = l(R/I + xR) = l(I : x/I)

= l(I : m/I) = dimk(I : m/I).
(3.5)

On the other hand, from the resolution of k = R/m, we have

Tork
2(R/I, k) ∼= I : m/I.

Now applying the Hilbert-Burch Theorem for the resolution of R/I, we
know that Tork

2(R/I, k) is a µ(I)− 1 dimensional k-vector space. Hence
r = µ(I)− 1 and I is m-full by Corollary 3.3.

Lemma 3.7. Let I and J be m-primary ideals of R. If I : m = I : x
and J : m = J : x, then IJ : m = IJ : x.

Proof. Put m = (x, y). Since R/(x) is a discrete valuation ring, there
exist x1 ∈ I, x2 ∈ J such that

(I, x) = (x1, x), (J, x) = (x2, x).

Note that neither x1 nor x2 is divisible by x. Let α ∈ IJ : x. Then

αx =
∑

(α1jx1 + β1jx)(α2jx2 + β2jx), α1j , β1j , α2j , β2j ∈ R

since β1jy ∈ I, β2jy ∈ J as for β1j ∈ I : x = I : m, β2j ∈ J : x = J : m.
On the other hand, since

∑
α1jα2jx1x2 is divisible by x, it follows

that
∑

α1jα2j is divisible by x. Hence

αxy = (βx1x2 + γ)x, β ∈ R, γ ∈ IJ.

Thus αy ∈ IJ and so αm ⊆ IJ .

Theorem 3.8. Let (R, m, k) be a 2-dimensional regular local ring. If
I is a m-primary m-full, then Im is also m-full.

Proof. Let Im : x = I. Then I : m = I : x and m : x = m : m.
Hence Im : x = Im : m by Lemma 3.7. But l(R/Im + xR) = o(Im)
since I is m-full, so Im is m-full by Theorem 3.5.
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